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SUMMARY

A three-dimensional numerical model based on the full Navier–Stokes equations (NSE) in �-coordinate
is developed in this study. The �-coordinate transformation is �rst introduced to map the irregular
physical domain with the wavy free surface and uneven bottom to the regular computational domain with
the shape of a rectangular prism. Using the chain rule of partial di�erentiation, a new set of governing
equations is derived in the �-coordinate from the original NSE de�ned in the Cartesian coordinate. The
operator splitting method (Li and Yu, Int. J. Num. Meth. Fluids 1996; 23:485–501), which splits the
solution procedure into the advection, di�usion, and propagation steps, is used to solve the modi�ed
NSE. The model is �rst tested for mass and energy conservation as well as mesh convergence by using
an example of water sloshing in a con�ned tank. Excellent agreements between numerical results and
analytical solutions are obtained. The model is then used to simulate two- and three-dimensional solitary
waves propagating in constant depth. Very good agreements between numerical results and analytical
solutions are obtained for both free surface displacements and velocities. Finally, a more realistic case
of periodic wave train passing through a submerged breakwater is simulated. Comparisons between
numerical results and experimental data are promising. The model is proven to be an accurate tool for
consequent studies of wave-structure interaction. Copyright ? 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

The numerical studies of surface wave propagation on uneven bottoms can be tracked back in
1960s using wave ray-tracing method [1]. As the computational power advanced since then,
a few new approaches of modeling surface waves were developed and became more popular.
One of them was based on the depth-averaged equations, such as shallow water equation
model or Boussinesq equation model [2; 3]. The depth-averaged models are computationally
e�cient with the tradeo� of losing depth-related information. Another approach is based on
the potential �ow theory. Assuming the �ow is irrotational, the velocity potential � exists
and the governing equation for � is the Laplace equation. The numerical model that uses
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the boundary element method (BEM) has been developed to solve this type of �ow and it
has been applied to solve wave propagation problems [4]. In general, the BEM model is also
computational e�cient. However, it cannot be used to deal with the �ows involving vortex
or turbulence generation.
To solve a realistic three-dimensional problem, a numerical model with the capability of

handling vorticity and even turbulence is necessary. One approach of this kind is to solve
the Navier–Stokes equations (NSE) with the hydrostatic pressure assumption. This type of
model is usually referred to as the quasi-three-dimensional model, which can provide three-
dimensional �ow patterns with a�ordable computational expenses. Johns and Je�erson [5] were
the early explorers of this approach, though their model was only two-dimensional. Casulli and
Cheng [6] presented a three-dimensional model of this type. The model was used to simulate
the �ooding and drying of tidal waves. This type of model can also be applied to study various
turbulent channel �ows [7]. Because of the employment of hydrostatic pressure assumption,
such models are generally applied to shallow water �ows. When the vertical acceleration
of �uids is strong, i.e., wave impact on structures, the models may fail to provide accurate
results.
In order to account for the e�ect of vertical acceleration of �uids, the full NSE must be

solved. The earliest model of this kind was developed by Harlow and Welch [8] by using
the Marker-and-Cell (MAC) method. However, due to the exhausting computational time,
the practical three-dimensional model of this type did not become popular until the 1990s
when computing powers increase signi�cantly. For example, Thomas and Leslie [9] proposed
a three-dimensional model based on the control volume technique. The model was used to
study a two-dimensional inviscid large amplitude wave with periodic boundary. The model
was further extended by Shi et al. [10] to calculate open channel �ows using the Large
Eddy Simulation (LES) model. Independently, Casulli [11] extended his earlier work [6] to
a truly three-dimensional model. The new model was found to be more accurate than the
earlier quasi-three-dimensional model when a wave train passing a submerged breakwater
was studied.
In the above models, the Cartesian coordinate was used and thus the free surface normally

crosses the computational cell arbitrarily. This brings the di�culty of applying the pressure
boundary condition precisely on the free surface and may eventually a�ect the accuracy of
velocity computation nearby. To solve this problem, the �-coordinate could be introduced
instead, provided that the free surface displacement is the single function of the horizontal
plane. By doing so, a three-dimensional free surface �ow can be mapped into a rectangular
prism with the free surface being always located on the upper computational boundary. As a
result, with the use of the same number of computational cells, one may obtain more accurate
results by using �-coordinate models.
Although there have been many �-coordinate numerical models for simulating surface waves

[5; 12; 13], all of the above-mentioned papers assumed hydrostatic pressure and thus they are
not the fully three-dimensional models. Only until very recently, Stansby and Zhou [14]
proposed a two-dimensional �-coordinate numerical model that considered non-hydrostatic
pressure. Based on their study, the inclusion of non-hydrostatic pressure in the computation
is essential to accurately predict �ow separations behind a steep slope. On the other hand,
Hodges and Street [15] proposed another fully three-dimensional model for free surface �ows
using boundary �tted coordinate. Attempting to minimize the grid skewness, the Poisson grid
generation method was used instead of the �-coordinate transformation to create boundary-
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orthogonal grids. Such mesh generation method requires the solution of Poisson equation at
each time step for the mesh generation and thus is computational demanding.
In this study, a model that solves the fully three-dimensional NSE in the �-coordinate is

proposed. Retaining the advantage of using boundary �tted coordinates, the model is com-
putationally more economical than the Poisson grid generation method [15]. The proposed
model can be used to simulate non-breaking waves propagating on uneven bottoms or wave
passing through surface-piercing structures. In the following sections, governing equations and
boundary conditions in the transformed plane are �rst presented. Numerical approximations
are given next. A series of numerical tests, which include water sloshing in a con�ned con-
tainer, solitary wave propagating in constant water depth, and periodic wave train passing
a submerged breakwater, are performed to validate the proposed model. Numerical results
are compared to available analytical solutions and experimental data in terms of free surface
pro�les and velocities.

GOVERNING EQUATIONS

Governing equations and boundary conditions in Cartesian coordinate

In the physical domain of a water wave problem, the Cartesian coordinate (x∗1 ; x
∗
2 ; x

∗
3), where

x∗1 = x
∗; x∗2 =y

∗, and x∗3 = z
∗, with the time frame t∗ are introduced. The horizontal plane is

represented by (x∗1 ; x
∗
2). The vertical coordinate is represented by x

∗
3 with its origin located

on the elevation of still water level. Therefore, for a non-breaking wave problem where the
free surface displacement � is the single function of the horizontal plane (x∗1 ; x

∗
2), the physical

domain in general has an irregular shape with x∗3 spanning from the bottom −h to free surface
�. The corresponding Navier–Stokes equations (NSE) are:

@uI
@x∗I

=0 (1)

@uI
@t∗

+ uJ
@uI
@x∗J

=−1
�
@p
@x∗I

+ gI +
@�IJ
@x∗J

(2)

where I; J =1; 2; 3, uI the velocity component in the I th direction, p the pressure, � the
density, and �IJ = �(@uI =@x∗J + @uJ =@x

∗
I ) the viscous stress with � the kinematic molecular

viscosity.
The governing equation for the free surface displacement can be derived from the vertical

integration of the continuity Equation (1) plus the appropriate boundary conditions,

@�
@t∗

+
@
@x∗J

∫ �

−h
uJ dz∗=0 (3)

where J =1; 2.
Besides the above governing equations, di�erent types of boundary conditions are also

needed. On the bottom, the no-slip boundary condition ensures that,

uI =0 (4)

where I =1; 2; 3 and the pressure gradient in the normal direction can be derived from Equa-
tion (2) as,
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@p
@n∗

=�gn (5)

On the free surface, the speci�ed pressure, which is usually taken as zero, is given,

p=0 (6)

and the continuity of tangential and normal stresses across the free surface is also enforced,

(�tn)water = (�tn)air; (�nn)water = (�nn)air (7)

In the above equation, t represents the tangential direction on the free surface and n the
normal direction. In the absence of wind e�ect, both (�tn)air and (�nn)air can be set to zero.
At the in�ow boundary, both the free surface displacement and velocities at di�erent ele-

vations are speci�ed based on either the analytical solution or the laboratory measurement of
incoming �ows. At the outgoing boundary, the radiation boundary condition is used to allow
the �ow to go out freely without re�ection,

@C
@t∗

+ cI
@C
@x∗I

=0 (8)

where I =1; 2, cI is the wave celerity, and C could represent both � and uJ (J =1; 2; 3).
Based on Equation (2), the horizontal pressure gradient at the in�ow and radiation boundaries
is represented by,

@p
@x∗I

=−�@uI
@t∗

− �uJ @uI@x∗J
+ �gI + �

@�IJ
@x∗J

(9)

where again I =1; 2, and J =1; 2; 3.
On a vertical wall that is either within or at the boundary of the computational domain, the

no-slip boundary condition as described in Equation (4) still applies. The normal gradients of
pressure and free surface displacement are speci�ed as follows,

@p
@n∗

=�gn
@�
@n∗

=0 (10)

where n is the normal direction to the surface of the vertical wall.

Governing equations and boundary conditions in �-coordinate

In this study, assuming the free surface is the single function of the horizontal plane, a slightly
modi�ed �-coordinate from Blumberg and Mellor [12] is introduced as follows,

t= t∗ x= x∗ y=y∗ �=
z∗ + h
D

(11)

where D= � + h. The above coordinate transformation basically maps the varying vertical
coordinate in the physical domain to a uniform transformed space where � spans from 0 to
1. The transformation process is illustrated in Figure 1. For simplicity, only x–z (x–�) plane
is shown and the y–z (y–�) plane is de�ned in the same way.
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Figure 1. Illustration of �-coordinate transformation.

Based on the principle of chain di�erentiation, the partial di�erentiation of a variable
f=f(x∗; y∗; z∗; t∗) in the physical domain should be modi�ed in the transformed domain
based the following rules,

@f
@t∗

=
@f
@t
+
@f
@�

@�
@t∗

@f
@x∗

=
@f
@x
+
@f
@�

@�
@x∗

@f
@y∗

=
@f
@y
+
@f
@�

@�
@y∗

@f
@z∗

=
@f
@�

@�
@z∗

(12)

Substituting Equation (12) into Equations (1) and (2), we obtain the governing equations in
the new coordinate (x; y; �) and time t as follows,

@u
@x
+
@u
@�

@�
@x∗

+
@v
@y
+
@v
@�

@�
@y∗

+
@w
@�

@�
@z∗

=0 (13)

@u
@t
+ u

@u
@x
+ v

@u
@y
+!

@u
@�
=−1

�

(
@p
@x
+
@p
@�

@�
@x∗

)
+ gx

+
@�xx
@x

+
@�xx
@�

@�
@x∗

+
@�xy
@y

+
@�xy
@�

@�
@y∗

+
@�xz
@�

@�
@z∗

(14)

@v
@t
+ u

@v
@x
+ v

@v
@y
+!

@v
@�
= −1

�

(
@p
@y
+
@p
@�

@�
@y∗

)
+ gy

+
@�yx
@x

+
@�yx
@�

@�
@x∗

+
@�yy
@y

+
@�yy
@�

@�
@y∗

+
@�yz
@�

@�
@z∗

(15)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1045–1068



1050 P. LIN AND C. W. LI

@w
@t
+ u

@w
@x
+ v

@w
@y
+!

@w
@�
=−1

�
@p
@�

@�
@z∗

+ gz

+
@�zx
@x

+
@�zx
@�

@�
@x∗

+
@�zy
@y

+
@�zy
@�

@�
@y∗

+
@�zz
@�

@�
@z∗

(16)

where,

!=
D�
Dt∗

=
@�
@t∗

+ u
@�
@x∗

+ v
@�
@y∗

+ w
@�
@z∗

(17)

and,

@�
@t∗

=− �
D
@D
@t

@�
@x∗

=
1
D
@h
@x

− �
D
@D
@x

@�
@y∗

=
1
D
@h
@y

− �
D
@D
@y

@�
@z∗

=
1
D

(18)

Since the governing equations in the transformed plane involve the terms of [(@h)=(@x)] and
[(@h)=(@y)], the corresponding numerical model cannot treat the submerged structure with
vertical wall where there exists the discontinuity of water depth gradient. However, if the
structure is free surface piercing, the surface of the structure can be regarded as a solid wall
where the boundary condition is applied rather than the solution is pursued.
In the transformed space, the stresses are calculated as follows,

�xx =2�
(
@u
@x
+
@u
@�

@�
@x∗

)
�xy= �yx= �

(
@u
@y
+
@u
@�

@�
@y∗

+
@v
@x
+
@v
@�
@�
@x∗

)

�xz = �zx= �
(
@u
@�

@�
@z∗

+
@w
@x
+
@w
@�

@�
@x∗

)
�yy=2�

(
@v
@y
+
@v
@�

@�
@y∗

)

�yz = �zy= �
(
@v
@�

@�
@z∗

+
@w
@y
+
@w
@�

@�
@y∗

)
�zz=2�

(
@w
@�

@�
@z∗

)
(19)

The governing equation (3) for the free surface movement is converted into,

@�
@t
+
@
@x

[
D
∫ 1

0
u d�

]
+
@
@y

[
D
∫ 1

0
v d�

]
=0 (20)

All the Dirichlet type of boundary conditions that give the values of the variables will remain
the same. However, for the Neumann type of boundary condition that involves partial di�er-
entiation, modi�cations are needed in the transformed plane. For example, in the �-coordinate,
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the boundary condition for pressure on bottom (Equation (5)) is changed to,

@p
@�
=�Dgz (21)

The pressure gradient at the in�ow and radiation boundaries and on the vertical wall should
also be modi�ed so that [(@p)=(@x∗)]= [(@p)=(@x)]+[(@p)=(@�)][(@�)=(@x∗)] and [(@p)=(@y∗)]
= [(@p)=(@y)] + [(@p)=(@�)][(@�)=(@y∗)]. The radiation boundary condition of Equation (8)
in the transformed domain is changed to,

@C
@t
+
@C
@�

@�
@t∗

+ cx
@C
@x
+ cx

@C
@�

@�
@x∗

+ cy
@C
@y
+ cy

@C
@�

@�
@y∗

=0 (22)

NUMERICAL APPROXIMATIONS

In this section, the �nite di�erence solutions to the governing equations and boundary condi-
tions in the transformed domain are presented. Certain approximations that are employed to
simplify the computation are discussed. First of all, let us de�ne precisely the computational
domain that is used in the numerical calculation. As mentioned in the previous section, the
irregular physical domain with wavy free surfaces and uneven bottoms will be mapped into a
regular domain with the shape of rectangular prism. This rectangular prism is then discretized
by small cubes in the total number of M ×N ×L. All variables are de�ned at the corner
(node) of the computational cube. They are numbered from left to right as i=1; 2; : : : ; M +1
in the x-direction, j=1; 2; : : : ; N+1 in the y-direction, and k=1; 2; : : : ; L+1 in the �-direction.
The distance between node i and i + 1 in the x-direction, which is also the length of the ith
cube in the x-direction, is de�ned as �xi. In the same way, �yj and ��k can be de�ned. This
is illustrated in Figure 2. In order to have the �exibility of treating the �ow that has multiple
length scales, non-uniform mesh system is allowed in this model, which means that it is pos-
sible �xi �=�xi+1. All �nite di�erence schemes given below are based on the non-uniform
mesh system.

σ 

 L+1

N+1+
  2 
  1 1 

1   2 …   i-1  i   i+1 …..  M   M+1 x 

xi-1 xi      xi+1 xM� � � �

y

Figure 2. Schematic plot of mesh de�nition in �-coordinate.
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Advection step

As mentioned before, the entire computational procedure is broken into three major steps. The
�rst step is to treat the advection terms in the momentum Equations (14) to (16). Because of
the similarity of these three equations, only Equation (14) will be discussed. The other two
equations can be solved in the same way.
The �nite di�erence form for the advection step in Equation (14) can be represented as,

un+1=3i; j; k − uni; j; k
�t

+
(
u
@u
@x
+ v

@u
@y
+!

@u
@�

)
i; j; k

=0 (23)

In fact, the above form can be further split into three sub-steps as follows,

un+1=9i; j; k − uni; j; k
�t

+
(
u
@u
@x

)n
i; j; k

=0 (24)

un+2=9i; j; k − un+1=9i; j; k

�t
+
(
v
@u
@y

)n+1=9
i; j; k

=0 (25)

un+3=9i; j; k − un+2=9i; j; k

�t
+
(
!
@u
@�

)n+2=9
i; j; k

=0 (26)

Since the above three advection sub-steps have almost the same characteristics, they can
essentially be solved by the same numerical scheme. In this study, the combination of quadratic
backward characteristic method [16] and Lax–Wendro� method is used to solve the �ow
advection. Without losing generality, only Equation (24) is solved here. For simplicity, only
ui; j; k¿0 is considered. The negative velocity and Equations (25) and (26) could be solved
similarly.
In order to employ the quadratic backward characteristics method, the advection distance

�xa is �rst de�ned as �xa= uni; j; k�t. Equation (24) is then solved as,

(un+1=9i; j; k )QC =
(�xi−1 −�xa)(−�xa)
�xi−2(�xi−2 + �xi−1)

uni−2; j; k

+
(�xi−2 + �xi−1 −�xa)(−�xa)

(�xi−2)(−�xi−1) uni−1; j; k

+
(�xi−2 + �xi−1 −�xa)(�xi−1 −�xa)

(�xi−2 + �xi−1)�xi−1
uni; j; k (27)

The Lax–Wendro� method solves Equation (24) as,

(un+1=9i; j; k )LW =
�xa(�xi +�xa)

�xi−1(�xi−1 + �xi)
uni−1; j; k
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+
(�xi−1 −�xa)(−�xi −�xa)

�xi−1(−�xi) uni; j; k

+
(�xi−1 −�xa)(−�xa)
(�xi−1 + �xi)�xi

uni+1; j; k (28)

This study uses the average of the above two methods to achieve the stable and accurate
numerical results, i.e.,

un+1=9i; j; k = �(un+1=9i; j; k )QC + (u
n+1=9
i; j; k )LW �=2 (29)

Di�usion step

The di�usion process is solved after the advection is completed. Again, without the loss of
generality, we still discuss Equation (14) only,

un+2=3i; j; k − un+1=3i; j; k

�t
=
(
@�xx
@x

+
@�xx
@�

@�
@x∗

+
@�xy
@y

+
@�xy
@�

@�
@y∗

+
@�xz
@�

@�
@z∗

)n+1=3
i; j; k

(30)

All stress terms in the above equations can be calculated based on Equation (19). The central
di�erence method is used to discretize all partial di�erentiation terms in the above equation.
For example, (

@�xx
@x

)n+1=3
i; j; k

=
(�xx)

n+1=3
i+1=2; j; k − (�xx)n+1=3i−1=2; j; k
(�xi−1 + �xi)=2

(31)

where

(�xx)
n+1=3
i+1=2; j; k =2�

(
ui+1; j; k − ui; j; k

�xi
+
ui+1=2; j; k+1 − ui+1=2; j; k−1

��k−1 + ��k

(
@�
@x∗

)
i+1=2; j; k

)n+1=3

(�xx)
n+1=3
i−1=2; j; k =2�

(
ui; j; k − ui−1; j; k

�xi−1
+
ui−1=2; j; k+1 − ui−1=2; j; k−1

��k−1 + ��k

(
@�
@x∗

)
i+1=2; j; k

)n+1=3 (32)

The velocity between nodes is obtained by the linear interpolation. The derivatives of � are
calculated based on formula (18). The other stress terms in Equation (30) could be discretized
similarly.

Propagation step

The propagation step solves the additional source and sink terms besides the advection and
di�usion. In NSE, these terms include pressure and gravitational forces. The projection method
[17] is used to calculate the pressure and velocity �eld so that the updated velocity �eld
satis�es the divergence-free condition as imposed by the continuity Equation (13). The �nite
di�erence forms are written as follows,

un+1i; j; k − un+2=3i; j; k

�t
=−1

�

(
@p
@x
+
@p
@�

@�
@x∗

)n+1
i; j; k

+ gx (33)
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vn+1i; j; k − vn+2=3i; j; k

�t
=−1

�

(
@p
@y
+
@p
@�

@�
@y∗

)n+1
i; j; k

+ gy (34)

wn+1i; j; k − wn+2=3i; j; k

�t
=−1

�

(
@p
@�

@�
@z∗

)n+1
i; j; k

+ gz (35)

(
@u
@x
+
@u
@�

@�
@x∗

+
@v
@y
+
@v
@�

@�
@y∗

+
@w
@�

@�
@z∗

)n+1
i; j; k

=0 (36)

Performing the following operation:

@(33)
@x

+
@(33)
@�

@�
@x∗

+
@(34)
@y

+
@(34)
@�

@�
@y∗

+
@(35)
@�

@�
@z∗
;

and substituting Equation (36) into the manipulation, we obtain the modi�ed Poisson pressure
equation as follows,

{
@2p
@x2

+
@2p
@y2

+

[(
@�
@x∗

)2
+
(
@�
@y∗

)2
+
(
@�
@z∗

)2] @2p
@�2

+ 2
(
@�
@x∗

@2p
@x@�

+
@�
@y∗

@2p
@y@�

)
+
(
@2�
@x∗@x

+
@2�
@y∗@y

)
@p
@�

}n+1
i; j; k

=
�
�t

(
@u
@x
+
@u
@�

@�
@x∗

+
@v
@y
+
@v
@�

@�
@y∗

+
@w
@�

@�
@z∗

)n+2=3
i; j; k

(37)

Compared with the conventional Poisson pressure equation, the above equation has the ad-
ditional cross-di�erential terms and other terms resulting from the coordinate transformation.
The �uid density has been assumed to be constant during the derivation. Substituting �nite
di�erence forms of all derivatives in Equation (37) for all interior nodes, we obtain a system
of equations as follows:

Aq= b (38)

where A is a sparse matrix with the dimension of (M+1)(N+1)(L+1)× (M+1)(N+1)(L+1)
and q is the vector of to-be-solved pressure pn+1. There are totally 19 diagonal lines in A,
12 of which arise from cross-di�erentiations due to �-coordinate transformation. Matrix A is
positive de�nite and symmetric and it contains information of mesh system, free surface and
bottom geometry, and boundary conditions. Vector b contains information of sources (right
hand side of Equation (37)) and boundary conditions. The system of Equation (38) can be
e�ciently solved by conjugate gradient method with a proper pre-conditioner. In this study,
the incomplete Cholesky conjugate gradient (ICCG) method as proposed by Kershaw [18] and
utilized by Lin and Liu [17] will be employed as the solver to Equation (38). The description
of the solver can be found in Kershaw [18] and will not be given here.
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Once the correct pressure information is found at the time step n + 1, it is substituted
into Equations (33) to (35) to �nd the velocity information at the new time step so that the
divergence free condition of Equation (36) is satis�ed at time step n+ 1.

Free surface tracking step

Finally, the free surface displacement is updated by solving Equation (20). The �nite di�erence
form looks like,

�n+1i; j; k − �ni; j; k
�t

=− 1
�xi−1 + �xi

(
�xi−1

FXi+1; j; k − FXi; j; k
�xi

+�xi
FXi; j; k − FXi−1; j; k

�xi−1

)

− 1
�yj−1 + �yj

(
�yj−1

FYi; j+1; k − FYi; j; k
�yj

+�yj
FYi; j; k − FYi; j−1; k

�yj−1

)
(39)

where FX and FY are the momentum �uxes in the x and y-directions, which can be calculated
as,

FXi; j; k = (h+ �)ni; j; k

[
l∑
k=1
un+2=3i; j; k+1=2��k + ��tgz

@�n

@x

]

FYi; j; k = (h+ �)ni; j; k

[
l∑
k=1
vn+2=3i; j; k+1=2��k + ��tgz

@�n

@y

] (40)

where the second term in the bracket of Equation (40) is the arti�cial di�usion term that will
not change the leading order solution of Equation (39) but can be used to control spurious
wiggles due to numerical dispersions. This treatment is similar to the Lax–Wendro� method for
nonlinear advection equations. The coe�cient � is the weighting coe�cient that lies between
0 and 1. When �=1, the scheme is normally too dissipative; when �=0, instability could
occur locally. The numerical tests show that best results are achieved when �∼ 2=3. In the
following computation, �=0:65 is used unless otherwise mentioned.

Boundary conditions

Boundary conditions are applied at the end of each computational step discussed above. In this
section, the details of how to apply boundary conditions are provided. Certain approximations
are made to simplify the computation.

On bottom: Based on the no-slip boundary condition, particle velocities in all directions need
to be zero on the bottom. This treatment, however, is accurate only when fairly �ne meshes
are used to resolve the bottom boundary layer. In practical computation, the resolution of the
boundary layer is generally too expensive for wave propagation problems. Alternatively, the
free-slip boundary condition (e.g., @u=@�= @v=@�=0) can be used to estimate velocity gradi-
ents at the �rst interior node, which will be subsequently used in the advection calculation.
In the meanwhile, the log-law wall function is used to calculate the wall shear stress that will
be used in the di�usion step [17]. The latter method can produce reasonable results when
relatively coarse meshes are used. The free-slip boundary condition without wall function can
also be applied to the case when inviscid or potential �ow is simulated.
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On free surface: The zero pressure condition on the free surface can be easily applied when
the Poisson equation is solved. The continuity of stress condition imposes the zero shear
and normal stresses on the free surface when the wind e�ect is absent. To simplify the
computation, the mild slope of free surface is further assumed, which is consistent with the
premise of non-breaking wave. The original stress boundary condition on the free surface
(Equation (7)) can then by simpli�ed as follows during the computation,

@u
@�
=0

@v
@�
=0

@w
@�
=0 (41)

The second-order three-point �nite di�erence form is used to discretize the above equation.
Here only the formula for u is presented,

ui; j; l+1 =
(��l +��l−1)2

��l−1(2��l +��l−1)
ui; j; l − ��2l

��l−1(2��l +��l−1)
ui; j; l−1 (42)

In�ow and radiation boundaries: As mentioned before, at the in�ow boundary, the velocity
and free surface displacement are speci�ed according to analytical solutions or laboratory
measurements. At the radiation boundary, the velocity and free surface is updated according
to Equation (22). The forward time upwind scheme is used to discretize the equation. The
direction of the wave celerity is assumed to align with the local particle movement, which
can be estimated by the information of local u and v.
The pressure boundary condition is worth more discussion. Although the Neumann type

of boundary condition for pressure can be derived directly from the governing equation, i.e.,
Equation (9), the application of such a condition is complicated. In this study, the simpler
condition for pressure is used in actual calculations with the assumption of negligibly small
vertical acceleration of �uids at these boundaries,

@p
@x
+
@p
@�

@�
@x∗

=−�gz @�@x
@p
@y
+
@p
@�

@�
@y∗

=−�gz @�@y (43)

The backward di�erence is used to discretize the spatial di�erentiation.

On vertical wall: The model can also treat the interior surface-piercing structure with vertical
walls. On the wall, the condition similar to that on the bottom is used for velocity. For free
surface displacement and pressure, zero gradients are applied.

Stability criterion

There are two stability criteria that have to be satis�ed to make the scheme stable.
One is related to the advection process that is characterized by the Courant number
restriction,

CrI =
UI�t
�xI

6� (44)
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where I =1; 2; 3 and UI is the bigger value of maximum particle velocity and wave celerity
(when in x–y plane). The value of � is 1.0 in principle but it is often taken below 0.5 to
ensure the accuracy and stability everywhere in the computational domain.
Another stability restriction is related to the di�usion process. Based on the stability analysis,

the following condition should be satis�ed,

��t
�x2I

6	 (45)

where again I =1; 2; 3 and 	 is normally taken as 1=6 in the computation. In most of cases
we studied, the maximum allowable time step is restricted by Equation (44) rather than by
Equation (45).

MODEL VALIDATIONS

Water sloshing in a con�ned container

In this test, water sloshing in a con�ned container with in�nite length in the y-direction is
simulated. The length of the container in the x-direction is W =1 m. Thus, the problem is
basically two-dimensional. The free surface of the �uid in the container has the initial slope
of S= tan 
=0:02 with the still water depth of h=0:2 m. Once the �uid begins to move
under gravity, there exists an in�nite number of standing wave modes in the container. If we
neglect the viscous and nonlinear e�ect, the motion of the �uid could be approximated by
the linear wave theory, which gives the free surface displacement as the function of x, t, and
S as follows,

�=
∞∑
n=1
An sin(knx) cos($nt) (46)

where kn=(n�)=W (wave number of the nth mode) and $n=
√
[gkn tanh(knh)] (frequency

of the nth mode), and An= SW=(n2�2)[4 sin(n�=2) − 2 sin(n�)] (wave amplitude of the nth
mode).
In the numerical simulation, the domain is discretized by an 80× 20 uniform mesh system

in the x–� plane. A constant �t=0:0015 s is used to carry out the computation up to 7:5 s.
To simulate the inviscid linear wave, the viscosity is set to zero and the free-slip boundary
condition as introduced in the previous section is used. Since the leading mode (n=1) of
the standing wave has the wave period T =2�=$1 = 1:5174 s, the entire simulation covers
about �ve wave periods for the leading mode. In Figure 3, comparisons between numerical
results and analytical solutions based on Equation (59) are presented at t=T ∼ 0:0, 0.2, 0.4,
0.6, 0.8, 1.0, 3.0, 5.0. It is noted that the analytical curves are based on the inclusion of the
�rst 40 modes and the further increase of n will change little of the solution. The �rst six
frames in Figure 3 correspond to the free surface variation during one wave period for the
leading mode and the last two are presented to demonstrate how longer time computation
behaves. From the comparisons shown in Figure 3, the numerical results agree very well
with the analytical solution during the �rst wave. A little larger discrepancy appears in the
comparisons for the longer time computation. This might be caused by the accumulated errors
in the numerical model or the neglect of nonlinear e�ect in analytical solutions. The overall
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Figure 3. Comparisons of numerical results (circles) and analytical solution (solid line) for
water slushing in a con�ned container.

comparisons, however, are fairly good, indicating that the model can predict the free surface
location accurately.
The model is further tested for the conservation of total mass and energy. At t=T =0:0,

the total �uid mass in the tank and the associated total energy are de�ned as M0 and E0,
respectively. In Figure 4, the time histories of mass M and energy (potential Ep, kinetic
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Figure 4. Calculated time histories of normalized mass (thick solid line) and total energy
(solid line)=kinetic energy (dashed line) + potential energy (dotted line).

Ek , and total Et) normalized by M0 and E0 are shown. It is seen that the mass is perfectly
conserved within the entire computation. The potential and kinetic energy alternate during the
computation with the total energy nearly conserved. The total energy decay is less than 2%,
which is acceptable for most of numerical studies.
Another numerical test we have performed is to check the mesh convergence of the model,

which can provide us with the useful information about the optimal mesh system for a general
problem. Two additional computations using the constant mesh size and �t half and double
of those in the previous reference test are performed. The free surface displacement at t=T ∼ 3
for these three tests are plotted together in Figure 5. The di�erence among three numerical
results are very small, especially between the reference test and the �ne mesh test, implying
that the solution is already convergent in terms of free surface computation when the reference
mesh system is used. Figure 6 gives the time history of the normalized total energy for three
tests (mass conserves perfectly for three cases and will not be given here). It is observed that
the coarse mesh system exhibits rather signi�cant energy decay, while the �ne mesh system
improves the energy conservation.
The above tests imply that the criterion for mesh convergence may vary in terms of di�erent

objectives. In general, the free surface computation is less sensitive to the mesh size than the
energy computation. In order to obtain the accurate results for energy, the problem should be
discretized by at least the reference mesh system, i.e., about 80 meshes for a wavelength of
the major mode and 20 meshes in vertical direction. However, if the free surface pro�le is the
major concern, the coarser mesh system using about 40 grids per wavelength and 10 grids in
vertical direction will be su�cient. It is also noted that the chosen problem is a very stringent
test because of the existence of signi�cant amount of high frequency modes. Thus, the good
energy conservation can only be achieved by using the rather �ne mesh system. Fortunately,
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Figure 5. Convergence test in terms of free surface displacement at t=T =1:5 using the reference mesh
(circles), coarse mesh (dashed line), �ne mesh (solid line) and non-uniform mesh (dotted line) systems.

Figure 6. Convergence test in terms of energy conservation using the reference mesh (circles),
coarse mesh (dashed line), �ne mesh (solid line) and non-uniform mesh (dotted line) systems.

in most of other problems, the energy spectrum might be much narrower and thus a medium
or even coarse mesh system would be adequate.
One more test using the non-uniform mesh system is conducted. The purpose of this test

is to check the accuracy of the model when non-uniform mesh systems, which are necessary
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Figure 7. Comparisons of free surface displacement for a solitary wave propagation
in a constant depth between numerical results (circles) and analytical solution (solid

lines) at t=10, 20, 30, and 40 s (from left to right).

for many practical problems, are used. The total number of mesh in this test is the same as
the reference test, i.e., 80× 20. However, �ner meshes (half size of that used in the reference
test) are assigned near the free surface and two sidewalls. The meshes then diverge linearly
to the bottom and interior domain. This kind of deployment of meshes is often used in
the computation of wave-structure interaction. In general, a non-uniform mesh system can
introduce additional truncation errors and thus could have larger energy decay rate. This is
con�rmed in Figure 6, which shows that the total energy decays a little faster for the non-
uniform mesh test. The free surface displacement, however, shows no noticeable di�erence
from the uniform mesh results (Figure 5).

Solitary wave propagating in constant water depth In this test, a solitary wave propagating in
constant water depth is simulated. The purpose of this test is to validate the in�ow boundary
condition for sending the proper wave and the radiation boundary condition for absorbing the
outgoing wave. Both free surface pro�le and particle velocity are validated against analytical
solutions.
First, the two-dimensional problem is investigated. A computational domain with the length

in x-direction of 100 m is discretized by a uniform 1000× 20 mesh system. The still water
depth h=1:0 m. A solitary wave with the wave amplitude of 0.1m is sent from the left in�ow
boundary by specifying the time history of free surface displacement and velocities based on
the analytical solution [19]. A constant �t=0:005 s is used to carry out the computation up
to 40s until then the main wave train leaves the computational domain. The viscosity is again
set to zero in order to compare the numerical results to the analytical solutions derived from
the potential �ow theory.
Figure 7 shows the comparisons between the calculated free surfaces and analytical solutions

at time t=10, 20, 30, and 40 s (from left to right; noted at t=40 s, the main wave has
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Figure 8. Comparisons of u and w at the middle elevation between numerical results (circles)
and analytical solutions (solid lines).

left the domain). In the �rst time frame, the agreement between computation and theory is
almost perfect, implying that the in�ow boundary condition has behaved ideally. As time
progresses, the di�erences in comparisons grow slightly (e.g., t=30 s), indicating that either
the numerical errors accumulates with time or the analytical solution degenerates for long
time propagation. Nevertheless, this di�erence is small enough to be tolerated in the numerical
modeling, considering that the wave has propagated about 100 h. The mass and energy have
found to be well conserved when wave propagates in the interior domain. At t=40 s, most
of wave has gone out of the computational domain through the right radiation boundary. The
re�ection wave detected is only 2% of the incident wave in terms of wave amplitude, and
about 0.05% in terms of wave energy.
Figure 8 shows the comparisons of horizontal and vertical velocities between the calcu-

lation and theory on the middle elevation of the water depth at t=10, 20 and 30 s. Fair
comparisons are obtained. Although most quasi-three dimensional models can provide almost
the same accurate calculation for horizontal velocity, they can hardly give the accurate result
for vertical velocity due to the neglect of dynamic pressure. The good agreement in Fig-
ure 8 for the vertical velocity indicates that the dynamic pressure has been well simulated
by this model, which is very important when the problem of wave-structure interaction is
studied.
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Figure 9. Surface plot of the evolution of obliquely incident solitary wave
propagation in constant depth.

To test how the model behaves in a three-dimensional situation, the above problem is
investigated from another point of view. In the new test, the wave train is sent from the left
and front boundaries at an angle of 
=30◦ (the previous case could now be regarded as the
special case when 
=0◦). The right and back boundaries are set to be radiation boundaries.
Since the wave is sent from an oblique direction, the behavior of the model in a realistic three-
dimensional problem could be simulated. A shorter computational domain with the horizontal
plane of 20 m× 10 m is discretized by a uniform mesh system with 200× 100× 20 meshes.
Figure 9 gives the surface plots for the evolution of the wave train at the time interval of
2 s from t=2 to t=12 s. It is seen that the waveform remains nearly permanent during
the propagation, agreeing with the theoretical expectation. The further validation by directly
comparing the free surface displacement between computation and theory at t=4, 6, 8, and
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Figure 10. Comparison of free surface displacement of an obliquely incident solitary wave
between numerical results (circles) and analytical solution (solid lines) at the section y=5 m

and t=4, 6, 8, and 10 s (from left to right).

10s (see Figure 10) con�rms the observation. This test demonstrates the accuracy of the model
for the three-dimensional computation. The radiation boundary condition of Equation (28) for
absorbing the oblique wave is also proven to be accurate.

Periodic wave train passing a submerged breakwater

Submerged breakwaters are usually deployed in the coastal area to reduce the wave energy
transmission. When a wave train passes through a submerged breakwater, it normally experi-
ences dramatic changes of waveform and signi�cant nonlinear energy transfer among di�erent
wave modes. Flow separations can be induced if the breakwater slope is steep. Under such
circumstance, the hydrostatic pressure assumption becomes invalid. Beji and Battjes [20; 21]
investigated this problem experimentally and numerically. They found that very poor pre-
dictions could result if the dispersion terms, which re�ect the in�uence of non-hydrostatic
pressure, are not properly modeled in the Boussinesq equations. Casulli [11] solved the same
problem numerically by using his model based on Navier–Stokes equations. He also found
that by including the non-hydrostatic pressure, wave transformation was predicted very well.
The hydrostatic model, however, gave totally unrealistic prediction.
In this study, we attempt to simulate a similar problem. Experiments that have almost the

same setup as that in Beji and Battjes [20] but with larger scale were conducted in Delft
Hydraulics (Figure 11). A regular wave train that has the wave height of 0:04 m and wave
period of 2:86 s was sent from the left boundary (x=0). The absorbing beach was installed
on the right side of wave �ume in the experiment but was replaced by a radiation boundary
in constant water depth in the numerical simulation, as shown in Figure 11. Totally 10 wave
gauges were deployed at x=3:04 m, 9:44 m, 20:04 m, 24:04 m, 26:04 m, 28:04 m, 30:44 m,
33:64m, 37:04m, and 41:04m, respectively. A two-dimensional mesh system of 1000× 20 is
used to discretize the entire computational domain. The time step is chosen to be �t=0:01 s.
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Figure 11. Experimental setup of a periodic wave train passing a submerged breakwater.

The computation is carried out up to t=45 s. The viscous e�ect has been included in the
simulation (�=1:0× 10−6) that will be discussed below. The simulation without viscosity has
also been conducted for reference and it is found that the di�erences in terms of free surface
displacement between two simulations are less than 0.1%, which implies that the viscous
e�ect is not signi�cant for this case.
Figure 12 shows comparisons between numerical results and gauge data for free surface

displacement at the last eight wave gauge locations. At the �rst two gauge locations, the
wave train remains sinusoidal with nearly perfect agreements between numerical results and
experimental data and they are not shown in Figure 12. From x=20:04 to x=24:04 m
where wave starts to climb the slope, the gradually increasing wave steeping due to shoaling
e�ects is observed. At x=26:04 m, 28:04 m and 30:44 m, where the wave rides over the
top of breakwater, the growth of secondary wave becomes apparent. The numerical model
captures this process accurately, though some details of wave signature do not completely
agree between numerical results and experimental data.
Behind the breakwater, the secondary wave mode gains energy from the main wave mode

and the e�ective wavelength becomes shorter. This can be seen at the last three gauge loca-
tions. In general, the prediction of wave transformation in this region is of the most di�culty
because of the complicated �ow separation and nonlinear wave energy transfer. Rigorously
speaking, a proper turbulence model needs to be included to simulate this physical process
correctly. Since the present model neglects the turbulence e�ect, the discrepancies between
numerical results and experimental data become larger in this region compared with those
at upstream gauge locations. Similar discrepancies, i.e., overestimation of trough level when
waves re-enter into constant water depth (e.g., x=37:04 m in Figure 12), have also shown
in Casulli’s [11] simulation (e.g., Figure 5 in his paper), which neglects the turbulence e�ect
too. Nevertheless, the overall agreements between the numerical results and experimental data
are still very encouraging. This demonstrates that the model has the capability of simulating
complicated problems of wave-structure interaction, which we shall explore further for the
three-dimensional case in the future [22].
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Figure 12. Comparisons of free surface displacement at the last eight wave gauge locations between
numerical results (solid lines) and experimental data (circles).
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CONCLUSION

In this study, a new model that solves the NSE in the three-dimensional �-coordinate has been
developed. The model retains the advantage of solving the full NSE without neglecting the dy-
namic pressure, which is important for calculating vertical velocities accurately. Furthermore,
the employment of �-coordinate simpli�es the application of pressure boundary condition on
free surfaces and thus improves the computational accuracy. The proposed model is validated
by a series of numerical tests that include wave sloshing in a tank, solitary wave propagation
in constant water, and periodic wave passing a submerged breakwater. The accuracy of the
model for predicting the free surface displacement and velocities is excellent, provided the
reasonable numerical resolution is used. The model conserves mass perfectly for all testing
cases even with the use of coarse meshes. Satisfactory energy conservation, however, normally
requires relatively �ne mesh resolution, especially for cases where signi�cant amount of high
frequency wave modes is present. For most practical problems involving wave propagation,
in order to obtain the accurate results for energy computation, a mesh system that resolves
a wavelength by 80 meshes and water depth by 20 meshes is suggested. On the other hand,
if the free surface information is the major objective, a coarser mesh system of 40× 10 for
a wavelength would be adequate. In the near future, the validated model will be applied to
study the turbulent channel �ow by including a LES model as proposed by Li and Wang
[23]. The model will also be used to study three-dimensional wave-structure interactions.
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